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Abstract

Recent developments in end-to-end learning have shown
promising results for autonomous driving by replacing tra-
ditional modular pipelines with unified frameworks. How-
ever, many existing approaches are restricted to simulated
environments or lack real-world robustness. In this work,
we extend the TransFuser architecture to operate on real-
world, multi-modal inputs by fusing panoramic RGB im-
ages, LiDAR-based bird’s-eye view (BEV) features, and
ego-velocity measurements. Our model autoregressively
predicts a sequence of future waypoints over a 4-second
horizon and incorporates semantic BEV supervision to en-
hance spatial understanding. We train and evaluate our ap-
proach on the nuScenes dataset, demonstrating strong per-
formance in diverse urban driving scenarios.

1. Introduction
Recent advances in GPUs and computational power have

significantly accelerated the development of data-driven
autonomous driving systems. Traditional pipeline-based
frameworks decompose the task into perception, prediction,
and planning modules, offering interpretability and modu-
larity. However, end-to-end (E2E) approaches, which di-
rectly map sensor inputs to control actions, are gaining at-
tention for their simplicity, efficiency, and potential perfor-
mance gains.

Autonomous driving systems operate in complex and dy-
namic real-world environments, where relying on a single
sensor modality is often insufficient for robust and reliable
perception, prediction, and planning. Leveraging multi-
modal data—such as camera images, LiDAR point clouds,
radar signals, GPS, and inertial measurements—has be-
come essential for enhancing situational awareness and en-

suring safety. Each modality provides unique and comple-
mentary information: cameras capture rich semantic con-
text, LiDAR delivers precise 3D spatial structure, and radar
performs well in adverse weather conditions. By fusing
these diverse sources of information, multimodal systems
can achieve greater redundancy, accuracy, and resilience to
sensor failure or environmental noise.

TRANSFUSER [11] introduces a multi-modal fusion
Transformer that integrates global context and cross-modal
interactions during feature extraction from LiDAR and
camera images. It is designed for end-to-end autonomous
driving via an auto-regressive waypoint prediction frame-
work. TransFuser achieves a driving score of 47.3 on the
CARLA Longest6 Benchmark [5]. While its design is com-
putationally efficient and more suitable for industrial de-
ployment, its training and evaluation are limited to simu-
lated environments.

In this study, we propose to build our framework upon
TRANSFUSER [11], adapting it to account for a real world
multi-modality data, camera and LiDAR point clouds. Un-
like the original TransFuser, which utilizes LiDAR and
monocular images from a simultaneous environment, our
method takes a single panoramic image and processed Li-
DAR BEV features as input, augmented with the current
ego-velocity. Temporal reasoning is handled by an autore-
gressive decoder that predicts a sequence of future way-
points over a 4-second horizon. To ensure real-world ap-
plicability and robustness, we train and evaluate our model
on the nuScenes dataset [2], which provides diverse, real-
world urban driving scenarios.
Contributions. Our key contributions are:

• We extend the TransFuser architecture to handle real-
world panoramic RGB and LiDAR BEV data from
nuScenes, with temporal reasoning enabled through
autoregressive waypoint prediction.
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• We incorporate semantic BEV supervision to enhance
LiDAR representation learning.

• We provide a thorough evaluation with both quanti-
tative metrics and qualitative trajectory visualizations
across urban scenes.

2. Related Work
The rise of GPUs and the steady advancement in com-

putational resources have greatly empowered data-driven
learning methods, leading to remarkable breakthroughs
in the field of autonomous driving[6]. Many research
have been done to improve the performance of each mod-
ule in a pipeline framework, including perception[8, 14],
prediction[7] and planning[13], in the autonomous driving
system. The pipeline framework has an advantage of in-
terpretation enabling people can understand what the out-
put of each component and avoid unexpected behavior[12]
from the final output which is very important of autonomous
driving safety.

Another framework for autonomous driving is the end-
to-end system, which takes raw sensor data as input and di-
rectly outputs planning decisions or control actions. In this
approach, features are forward-propagated through sequen-
tial modules, and the final planning output is optimized via
backpropagation across all modules. This architecture of-
fers advantages such as simplicity, potential for improved
performance, and computational efficiency[3].

Since the introduction of ALVINN [9], which employed
a three-layer neural network for autonomous land vehicle
navigation, numerous studies have explored end-to-end au-
tonomous driving using machine learning techniques. A
convolutional neural network (CNN)[1] was proposed that
takes raw camera images as input and directly outputs low-
level steering commands. During training, images from left,
right, and center cameras were used for data augmentation,
while during inference, only the center camera was used to
predict the steering angle. Visualization of the internal fea-
ture maps revealed that the network was able to learn salient
information, such as road boundaries. In real-world tests,
the system successfully drove a car autonomously for up to
10 kilometers on a highway without human intervention.

Behavior cloning, an off-policy method where a net-
work is trained using offline data and evaluated online,
often suffers from the compounding error problem due
to covariate shift. To address this, Dataset aggregation
was combined dataset aggregation, critical state sampling,
and replay buffer mechanisms into an on-policy learning
framework[10]. They trained a ResNet-34-based model
using RGB images, ego speed, and high-level navigation
commands as input, and predicted low-level control sig-
nals (steering, throttle, brake) as output [4]. Their approach
demonstrated improved performance under previously un-

seen towns and weather conditions.
Beyond CNN-based architectures, transformers have

also been adopted for autonomous driving since 2021.
Transfuser[11] was proposed, a transformer-based frame-
work that integrates multi-modal data (images and LiDAR)
for imitation learning. TransFuser achieved state-of-the-art
performance in terms of driving score on the CARLA
benchmark. More recently, several works have explored
the use of large language models (LLMs) for autonomous
driving. DriveGPT [15] leverages a multimodal LLM to
enhance the interpretability of end-to-end driving systems.
In addition to predicting control commands (speed and
steering angle), DriveGPT also provides natural language
explanations of driving behavior. It uses CLIP to extract
features from video segments, which are then tokenized
and fed into an LLM for both control prediction and textual
reasoning.

3. Dataset Overview
We use the nuScenes dataset [2], a large-scale au-

tonomous driving benchmark collected in Boston and Sin-
gapore. It contains 1,000 urban driving scenes, each 20 sec-
onds long and sampled at 2 Hz, totaling 1.4 million images.
Scenes include annotations for 23 object classes and sup-
port tasks such as detection, tracking, and planning. The
dataset features varied traffic density, weather, and lighting
conditions.

3.1. Sensor Suite and Data Modalities

Each scene includes six surround-view RGB cameras
(front, front-left, front-right, back-left, back-right, back),
a 32-beam LiDAR, five radars, and high-definition maps.
Cameras operate at 12 Hz, LiDAR at 20 Hz, and radar at 13
Hz. Vehicle pose, velocity, and acceleration are also pro-
vided for motion compensation and forecasting.

3.2. Annotations

nuScenes provides 3D bounding boxes for tracked agents
(vehicles, pedestrians, cyclists) at 2 Hz, with position, ori-
entation, and attributes. It also includes semantic map ele-
ments such as lanes, road boundaries, and crosswalks, en-
abling map-aware modeling.

4. Preprocessing Pipeline
4.1. Camera Input

We utilize three forward-facing camera views: front-left,
front, and front-right. Each image has a spatial resolution of
1600×900 pixels with 3 color channels, resulting in a shape
of 3×900×1600. To minimize potential boundary artifacts
arising from concatenation, we crop 100 pixels from both
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Figure 1. Visualization of camera (top) and BEV feature map (bot-
tom).

the left and right borders of each image, yielding a post-
crop resolution of 3×900×1400. The cropped images are
then concatenated along the width dimension to produce a
single panoramic input tensor of shape 3×900×4200. This
composite view captures a wide forward field-of-view and
serves as the input to the image encoder module.

4.2. LiDAR Input

To construct a bird’s-eye view (BEV) representation
from the LiDAR point cloud, we discretize a 50×50 me-
ter region around the ego vehicle into a 500×500 grid with
a spatial resolution of 0.1 meters per pixel. The ego vehicle
is centered at the bottom middle of the BEV frame. Two
feature channels are encoded per pixel:

• Point density: The number of LiDAR points falling
into each pixel.

• Maximum height: The maximum height of the points
within the pixel.

To suppress outliers and reduce ground clutter, we retain
only points with z-values in the range [−1m, 5m]. The re-
sulting tensor has shape 2×500×500 and serves as input to
the LiDAR encoder.

4.3. BEV Semantic Mask

In addition to LiDAR features, we generate a semantic
segmentation mask in the BEV frame. This mask is de-
rived from nuScenes annotations and classifies each pixel
into one of three categories: background, road surface, and
annotated vehicles. The semantic mask is used as supervi-
sion during training to evaluate the LiDAR encoder’s ability
to capture semantic scene structure from raw point clouds.

5. Method
We build on the open-source implementation of Trans-

Fuser [11], a Transformer-based sensor fusion model origi-
nally designed for end-to-end driving in the CARLA simu-

lator. Our modifications adapt it to handle real-world, multi-
frame data from nuScenes and extend it with semantic su-
pervision and temporal autoregressive decoding. Below, we
describe the model inputs, outputs, and loss formulation,
along with the learning algorithms used in each module.

5.1. Input and Output Formulation

Let It ∈ R3×H×W denote the panoramic RGB image at
time t, and let Lt ∈ RCL×H′×W ′

represent the BEV
LiDAR input, where CL = 3 (point density, and maximum
height channels). In addition, the model receives a target
navigation point p ∈ R2 which is the groundtruth ego way
point after 4 seconds and scalar ego velocity vt ∈ R. The
ground truth BEV semantic mask is denoted as
Ybev ∈ {0, 1, 2}H′×W ′

.

The model predicts:

• A sequence of future waypoints
Ŷwp = {ŷ1, . . . , ŷT } ∈ RT×2.

• A semantic segmentation map Ŷbev ∈ R3×H′×W ′
of

the BEV.

5.2. Model Architecture

The model can be divided into 3 parts, a Transfuser
Backbone, a waypoint prediction, and a BEV feature de-
coder part.

A Transfuser-based multimodal backbone (Transfuser-
Backbone) fuses RGB images, BEV LiDAR maps, and
fuse the features at each encoder layer. It employs two
parallel CNN encoders, ImageEncoder and LidarEncoder,
both adapted from the TIMM model library (both use Reg-
Net32 in our case). The ImageEncoder normalizes im-
age input It using ImageNet statistics and removes non-
essential components like the classification head, retaining
only the convolutional backbone and global average pooling
to extract spatial features. Similarly, LidarEncoder mod-
ifies the first convolutional layer to accept a configurable
number of input channels, while disabling classification-
related components. At each layer l, both encoders output
high-dimensional spatial feature maps that are subsequently
downsampled using adaptive average pooling into fixed grid
resolutions f lrgb ∈ Rd×N and f llidar ∈ Rd×M (5×22 for im-
age, 8×8 for LiDAR). These features are then flattened and
concatenated to form a unified token sequence, which is
passed into a two-stage transformer-based fusion module.
We compute the fused feature as:

f lfused = Transformer([f lrgb; f
l
lidar]), (1)

This fused output f lfused is then split back into two modality-
specific components: an updated image feature f lfused image

and an updated LiDAR featuref lfused lidar. Each is added
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element-wise to the corresponding original encoder feature
at that layer, and the result is fed forward as the input to the
next encoder stage in both branches.

For the ego way point prediction, the pooled fused fea-
ture vector z ∈ Rd of the transfuser backbone is passed
through a fully connected layer and used as the initial hid-
den state of a GRU decoder. The GRU autoregressively gen-
erates 2D displacements, conditioned on the previous out-
put and the target point. At each step t, the decoder com-
putes:

ht = GRU([xt;p],ht−1) (2)
∆ŷt = MLP(ht) (3)
xt+1 = xt +∆ŷt (4)

where xt ∈ R2 is the current predicted position, and ht

is the GRU hidden state. The final output is the sequence
{x1, . . . ,xT }.

For the bev decoder part, the intermediate feature map
from the LiDAR encoder is decoded into a BEV semantic
mask using a simple convolutional head:

Ŷbev = Upsample(ConvBlock(fbev)). (5)

This output is supervised with pixel-wise cross-entropy loss
using the annotated BEV mask.

5.3. Loss Functions

The overall training objective combines two losses:

L = λwp · Lwp + λbev · Lbev, (6)

where we set λwp = λbev = 1.0 in our experiments.
We minimize the L1 distance between predicted and

ground-truth waypoints:

Lwp =
1

T

T∑
t=1

∥ŷt − yt∥1 (7)

We use cross-entropy loss with class weights to address
imbalance:

Lbev = CE(Ŷbev,Ybev) (8)

5.4. Implementation Details

We adapt and extend the open-source TransFuser code-
base, originally designed for simulation environments. Our
contributions include:

• A custom data pipeline for loading panoramic im-
ages, LiDAR BEV tensors, and semantic labels from
nuScenes.

• An autoregressive GRU-based decoder for future way-
point prediction.

• A semantic segmentation head supervising the LiDAR
encoder via a BEV mask.

• Modifications to support autoregressive output decod-
ing and ego-velocity conditioning.

Our implementation is built in PyTorch and optimized
using AdamW with a learning rate of 10−4 and batch size
of 16. We freeze the pretrained image and LiDAR encoders
during training and fine-tune only the fusion and decoding
modules.

6. Results and Discussion
We evaluated our model on 100 test samples across two

distinct scenes and analyzed the waypoint prediction error
over a 4-second horizon (8 sequential waypoints) in both the
x and y directions, where the y-axis represents the along-
track (longitudinal) motion and the x-axis corresponds to
the cross-track (lateral) deviation.

As shown in Figure 2, the longitudinal (y) error in-
creases until around 2 seconds (step 3–4) and then gradually
decreases. This decline may be partially attributed to the
model’s use of the final target point as an input, which pro-
vides strong guidance near the endpoint but less constraint
in the mid-horizon. As a result, the model finds it more dif-
ficult to predict intermediate waypoints along the trajectory,
leading to greater error and variance in the middle steps. In
contrast, the lateral (x) error increases steadily over time,
with growing standard deviation, indicating that cross-track
deviations are more difficult to predict at longer horizons
due to accumulated uncertainty and maneuver variability.
These trends highlight the importance of modeling tem-
poral consistency and intent across the full trajectory, and
suggest that incorporating intermediate planning cues or
uncertainty-aware methods could improve prediction stabil-
ity throughout the entire horizon.

Figures 5 and 6 illustrate qualitative results of our
model’s performance across different driving scenarios us-
ing front camera views and BEV representations. As shown
in Figure 5, the predicted trajectories align closely with the
ground truth when the vehicle is driving straight or when
there is a single-lane road. In these simpler settings, the
model demonstrates strong predictive accuracy and stabil-
ity, likely due to reduced ambiguity in spatial planning and
fewer alternative maneuver options. In contrast, Figure 6
presents two failure cases where the predicted trajectories
deviate significantly from the ground truth, particularly dur-
ing left or right turns in multi-lane environments. The in-
creased prediction error in these scenarios may be attributed
to the lack of fine-grained lane-level information in the BEV
input. Specifically, while our model leverages road segmen-
tation in the LiDAR encoder, it does not explicitly incorpo-
rate lane boundary segmentation, which is critical for pre-
cise lateral planning in complex intersections or merging
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Figure 2. Error in x and y direction at different steps for 100 test
samples.

Figure 3. Acceleration Distribution for predicted waypoints and
ground truth waypoints

scenarios. These observations suggest that enhancing the
BEV representation with detailed lane semantics could sub-
stantially improve trajectory prediction performance, espe-
cially in scenes with high maneuver variability.

Additionally, we evaluated waypoint predictions kine-
matically, considering acceleration magnitude (Figure 3)
and rotation magnitude (Figure 4). Rotationally, we find

Figure 4. Change in angle of direction for predicted waypoints and
ground truth waypoints over 0.5 seconds

that the model is very close to our ground truth, demon-
strating a lack of unnecessary steering. Although the model
produces a lower turning angle median and average than the
ground truth, signifying that in cases where extreme turns
are necessary, the model may underperform in these cases.
The acceleration is a more dramatic example of this ob-
served undercompensation. The model produces waypoints
that lack as high acceleration as the ground truth, gener-
ally, which can be both a positive and a negative aspect.
The model generally provides a more efficient drive than
the ground truth. However, in cases where extreme acceler-
ation or deceleration is needed, the model may fail to do so
fully. However, the Nuscience data set used does not con-
tain many of these cases, as figure 3 demonstrates that the
highest acceleration in the ground truth data sampled here
was not larger than 2.19 m/s2. Because there are no ex-
treme data points in which rapid acceleration or rotation are
needed and human driving is not efficient, it is expected for
the model to adopt a more conservative waypoint output in
both acceleration and rotation, while being able to maintain
low loss.

7. Conclusion and Future Work

In this work, we present a real-world extension of the
TransFuser framework for end-to-end autonomous driv-
ing by integrating panoramic RGB images, LiDAR-derived
BEV features, and ego-velocity into an autoregressive way-
point prediction framework from the nuScenes dataset. Our
model fuses multimodal sensor inputs using a Transformer-
based architecture and autoregressively predicts future vehi-
cle waypoints over a 4-second horizon. To enhance spatial
understanding, we introduce semantic supervision via BEV
segmentation, encouraging the model to learn meaningful
geometric priors from raw LiDAR data.
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Figure 5. Visualization of camera (top) and BEV feature map (bot-
tom) of 2 good prediction result. The lower right figures show the
predicted trajectories in red lines and ground truth (GT) trajecto-
ries in green line.

Quantitative results demonstrate that our model main-

Figure 6. Visualization of camera (top) and BEV feature map (bot-
tom) of 2 relative poor prediction result.

tains low prediction error in straightforward driving scenar-
ios, while qualitative analyses reveal its strengths and lim-
itations in more complex, multi-lane environments. These
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findings highlight the value of combining semantic spatial
cues with temporal fusion for trajectory forecasting. Fur-
thermore, our adaptation of TransFuser to real-world data
bridges the gap between simulation and deployment, paving
the way for practical applications of multimodal imitation
learning.

In future work, we aim to extend our architecture by
incorporating a graph-based module that explicitly mod-
els interactions between the ego vehicle and surrounding
agents. Additionally, we plan to improve temporal mod-
eling by incorporating longer input sequences and memory-
aware mechanisms to better capture motion intent and be-
havior over time. Finally, we intend to scale our training
and evaluation across larger and more diverse datasets such
as the Waymo Open Dataset, enabling broader generaliza-
tion and robustness across complex driving scenarios. In
addition to model architecture, we plan to train on more ex-
treme driving scenarios using datasets provided by Waymo
in order to explore how well the model performs in uncom-
mon variable scenarios.
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